1,046 research outputs found

    The Exact Geometry of a Kerr-Taub-NUT Solution of String Theory

    Full text link
    In this paper we study a solution of heterotic string theory corresponding to a rotating Kerr-Taub-NUT spacetime. It has an exact CFT description as a heterotic coset model, and a Lagrangian formulation as a gauged WZNW model. It is a generalisation of a recently discussed stringy Taub-NUT solution, and is interesting as another laboratory for studying the fate of closed timelike curves and cosmological singularities in string theory. We extend the computation of the exact metric and dilaton to this rotating case, and then discuss some properties of the metric, with particular emphasis on the curvature singularities.Comment: 14 pages, 3 figure

    Minisuperspace Examples of Quantization Using Canonical Variables of the Ashtekar Type: Structure and Solutions

    Full text link
    The Ashtekar variables have been use to find a number of exact solutions in quantum gravity and quantum cosmology. We investigate the origin of these solutions in the context of a number of canonical transformations (both complex and real) of the basic Hamiltonian variables of general relativity. We are able to present several new solutions in the minisuperspace (quantum cosmology) sector. The meaning of these solutions is then discussed.Comment: 23 pages, latex, 3 figures (uuencoded, separate file

    Hidden symmetries and Killing tensors on curved spaces

    Full text link
    Higher order symmetries corresponding to Killing tensors are investigated. The intimate relation between Killing-Yano tensors and non-standard supersymmetries is pointed out. In the Dirac theory on curved spaces, Killing-Yano tensors generate Dirac type operators involved in interesting algebraic structures as dynamical algebras or even infinite dimensional algebras or superalgebras. The general results are applied to space-times which appear in modern studies. One presents the infinite dimensional superalgebra of Dirac type operators on the 4-dimensional Euclidean Taub-NUT space that can be seen as a twisted loop algebra. The existence of the conformal Killing-Yano tensors is investigated for some spaces with mixed Sasakian structures.Comment: 12 pages; talk presented at Group 27 Colloquium, Yerevan, Armenia, August 200

    Exact Solutions of Five Dimensional Anisotropic Cosmologies

    Get PDF
    We solve the five dimensional vacuum Einstein equations for several kinds of anisotropic geometries. We consider metrics in which the spatial slices are characterized as Bianchi types-II and V, and the scale factors are dependent both on time and a non-compact fifth coordinate. We examine the behavior of the solutions we find, noting for which parameters they exhibit contraction over time of the fifth scale factor, leading naturally to dimensional reduction. We explore these within the context of the induced matter model: a Kaluza-Klein approach that associates the extra geometric terms due to the fifth coordinate with contributions to the four dimensional stress-energy tensor.Comment: 11 page

    General Gauss-Bonnet brane cosmology

    Get PDF
    We consider 5-dimensional spacetimes of constant 3-dimensional spatial curvature in the presence of a bulk cosmological constant. We find the general solution of such a configuration in the presence of a Gauss-Bonnet term. Two classes of non-trivial bulk solutions are found. The first class is valid only under a fine tuning relation between the Gauss-Bonnet coupling constant and the cosmological constant of the bulk spacetime. The second class of solutions are static and are the extensions of the AdS-Schwarzchild black holes. Hence in the absence of a cosmological constant or if the fine tuning relation is not true, the generalised Birkhoff's staticity theorem holds even in the presence of Gauss-Bonnet curvature terms. We examine the consequences in brane world cosmology obtaining the generalised Friedmann equations for a perfect fluid 3-brane and discuss how this modifies the usual scenario.Comment: 20 pages, no figures, typos corrected, refs added, section IV changed yielding novel result

    Surface Layers in General Relativity and Their Relation to Surface Tensions

    Full text link
    For a thin shell, the intrinsic 3-pressure will be shown to be analogous to -A, where A is the classical surface tension: First, interior and exterior Schwarzschild solutions will be matched together such that the surface layer generated at the common boundary has no gravitational mass; then its intrinsic 3-pressure represents a surface tension fulfilling Kelvin's relation between mean curvature and pressure difference in the Newtonian limit. Second, after a suitable definition of mean curvature, the general relativistic analogue to Kelvin's relation will be proven to be contained in the equation of motion of the surface layer.Comment: 12 pages, LaTeX, no figur

    Spinning test particles and clock effect in Schwarzschild spacetime

    Full text link
    We study the behaviour of spinning test particles in the Schwarzschild spacetime. Using Mathisson-Papapetrou equations of motion we confine our attention to spatially circular orbits and search for observable effects which could eventually discriminate among the standard supplementary conditions namely the Corinaldesi-Papapetrou, Pirani and Tulczyjew. We find that if the world line chosen for the multipole reduction and whose unit tangent we denote as UU is a circular orbit then also the generalized momentum PP of the spinning test particle is tangent to a circular orbit even though PP and UU are not parallel four-vectors. These orbits are shown to exist because the spin induced tidal forces provide the required acceleration no matter what supplementary condition we select. Of course, in the limit of a small spin the particle's orbit is close of being a circular geodesic and the (small) deviation of the angular velocities from the geodesic values can be of an arbitrary sign, corresponding to the possible spin-up and spin-down alignment to the z-axis. When two spinning particles orbit around a gravitating source in opposite directions, they make one loop with respect to a given static observer with different arrival times. This difference is termed clock effect. We find that a nonzero gravitomagnetic clock effect appears for oppositely orbiting both spin-up or spin-down particles even in the Schwarzschild spacetime. This allows us to establish a formal analogy with the case of (spin-less) geodesics on the equatorial plane of the Kerr spacetime. This result can be verified experimentally.Comment: IOP macros, eps figures n. 2, to appear on Classical and Quantum gravity, 200

    Geodesic motions versus hydrodynamic flows in a gravitating perfect fluid: Dynamical equivalence and consequences

    Full text link
    Stimulated by the methods applied for the observational determination of masses in the central regions of the AGNs, we examine the conditions under which, in the interior of a gravitating perfect fluid source, the geodesic motions and the general relativistic hydrodynamic flows are dynamically equivalent to each other. Dynamical equivalence rests on the functional similarity between the corresponding (covariantly expressed) differential equations of motion and is obtained by conformal transformations. In this case, the spaces of the solutions of these two kinds of motion are isomorphic. In other words, given a solution to the problem "hydrodynamic flow in a perfect fluid", one can always construct a solution formally equivalent to the problem "geodesic motion of a fluid element" and vice versa. Accordingly, we show that, the observationally determined nuclear mass of the AGNs is being overestimated with respect to the real, physical one. We evaluate the corresponding mass-excess and show that it is not always negligible with respect to the mass ofthe central dark object, while, under circumstances, can be even larger than the rest-mass of the circumnuclear gas involved.Comment: LaTeX file, 22 page

    Collapsing shells of radiation in anti-de Sitter spacetimes and the hoop and cosmic censorship conjectures

    Get PDF
    Gravitational collapse of radiation in an anti-de Sitter background is studied. For the spherical case, the collapse proceeds in much the same way as in the Minkowski background, i.e., massless naked singularities may form for a highly inhomogeneous collapse, violating the cosmic censorship, but not the hoop conjecture. The toroidal, cylindrical and planar collapses can be treated together. In these cases no naked singularity ever forms, in accordance with the cosmic censorship. However, since the collapse proceeds to form toroidal, cylindrical or planar black holes, the hoop conjecture in an anti-de Sitter spacetime is violated.Comment: 4 pages, Revtex Journal: to appear in Physical Review

    Evolution of high-frequency gravitational waves in some cosmological models

    Get PDF
    We investigate Isaacson's high-frequency gravitational waves which propagate in some relevant cosmological models, in particular the FRW spacetimes. Their time evolution in Fourier space is explicitly obtained for various metric forms of (anti--)de Sitter universe. Behaviour of high-frequency waves in the anisotropic Kasner spacetime is also described.Comment: 14 pages, 8 figures, to appear in Czech. J. Phy
    corecore